caffeine

KEY BENEFITS OF CAFFEINE

 

    • Supports exercise performance
    • Supports mood
    • Supports cognitive performance

ABOUT CAFFEINE

We can benefit physically and mentally from small amounts of caffeine (ideally from one cup of organic, pesticide free coffee per day). It promotes arousal, which is necessary for paying attention and reacting quickly.

 

It is not surprising, therefore, that caffeine has become one of the most commonly used and studied substances, both for sports performance and brain function. Although caffeine is often the focus of research, coffee polyphenols have been shown to benefit the body.

 

You can tap into the proven benefits of caffeine in small amounts, including a lower risk of type 2 diabetes b42, better glucose variability, lower depression ratesb41, lower stroke rates43, lower chances of breast cancer, lower risk of dementia and/or Alzheimer’sb35 better memory recall, high antioxidant content, fat loss and improved energy levels, mental alertness, and enhanced mood.   Caffeine also doubles the fat burning capacity of your body.b28 Caffeine is proven to increase ketone production.b30


CAFFEINE FULL BENEFITS

Brain function

 

  • Adenosine receptor antagonist [2]
  • Adenosine decreases the levels of the neurotransmitters acetylcholine, glutamate, serotonin, dopamine and norepinephrine; blocking adenosine receptors, caffeine counters those effects [3,4]
  • Upregulates acetylcholine signaling [4–7]
  • Upregulates dopamine signaling [4,8–13]
  • Upregulates serotonin signaling [4,7,14–17]
  • Upregulates glutamate signaling [4,8,9]
  • Upregulates GABA signaling [4,7]
  • Upregulates noradrenaline signaling [4,16]
  • Upregulates cortical activation in the brain [2,4]
  • Upregulates cerebral metabolism [2,4]
  • Promotes wakefulness [18]

 

Cognitive function

 

  • Supports cognitive performance [1,4,19–22]
  • Supports executive function [23–25]
  • Supports information processing rate [2,26,27]
  • Supports simple and sustained attention [1,23,27,28]
  • Supports vigilance [1,28]
  • Supports task switching [27]
  • Supports reaction time [1,21,22,27]
  • Supports reasoning [20]
  • Supports creative thinking [24]
  • Protects from mental fatigue [26,28]

 

Neuroprotection

 

  • Protects against neurotoxic agents [29]
  • Protects from neurodegenerative processes [30]

 

Mood

 

  • Improves mood [4,21,22,25,31]

 

Physical performance

 

  • Protects from physical fatigue [19,22,23,32]
  • Decreases perceived exhaustion [1]
  • Supports muscle endurance and strength exercise activities [1]
  • Enhances speed, power, and agility during intense exercise [1]

 

Other effects

 

  • Upregulates the metabolic rate [33–35]
  • Non-selective phosphodiesterase inhibitor [36]

 

CAFFEINE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] T.M. McLellan, J.A. Caldwell, H.R. Lieberman, Neurosci. Biobehav. Rev. 71 (2016) 294–312.
[2] G. Burnstock, Advances in Experimental Medicine and Biology 986 (2013) 1–12.
[3] B.B. Fredholm, Pharmacol. Toxicol. 76 (1995) 93–101.
[4] B.B. Fredholm, K. Bättig, J. Holmén, A. Nehlig, E.E. Zvartau, Pharmacol. Rev. 51 (1999) 83–133.
[5] E. Acquas, G. Tanda, G. Di Chiara, Neuropsychopharmacology 27 (2002) 182–193.
[6] A.J. Carter, W.T. O’Connor, M.J. Carter, U. Ungerstedt, J. Pharmacol. Exp. Ther. 273 (1995) 637–642.
[7] D. Shi, O. Nikodijević, K.A. Jacobson, J.W. Daly, Cell. Mol. Neurobiol. 13 (1993) 247–261.
[8] G. Racchetti, A. Lorusso, C. Schulte, D. Gavello, V. Carabelli, R. D’Alessandro, J. Meldolesi, J. Cell Sci. 123 (2010) 165–170.
[9] D. Quarta, J. Borycz, M. Solinas, K. Patkar, J. Hockemeyer, F. Ciruela, C. Lluis, R. Franco, A.S. Woods, S.R. Goldberg, S. Ferré, J. Neurochem. 91 (2004) 873–880.
[10] B.E. Garrett, S.G. Holtzman, Eur. J. Pharmacol. 262 (1994) 65–75.
[11] K.R. Powell, P.M. Iuvone, S.G. Holtzman, Pharmacol. Biochem. Behav. 69 (2001) 59–70.
[12] M. Solinas, S. Ferré, Z.-B. You, M. Karcz-Kubicha, P. Popoli, S.R. Goldberg, J. Neurosci. 22 (2002) 6321–6324.
[13] X. Zheng, S. Takatsu, H. Wang, H. Hasegawa, Pharmacol. Biochem. Behav. 122 (2014) 136–143.
[14] D.J. Haleem, A. Yasmeen, M.A. Haleem, A. Zafar, Life Sci. 57 (1995) PL285–92.
[15] S. Khaliq, S. Haider, F. Naqvi, T. Perveen, S. Saleem, D.J. Haleem, Pak. J. Pharm. Sci. 25 (2012) 21–25.
[16] M.D. Chen, W.H. Lin, Y.M. Song, P.Y. Lin, L.T. Ho, Zhonghua Yi Xue Za Zhi 53 (1994) 257–261.
[17] M. Okada, Y. Kawata, K. Kiryu, K. Mizuno, K. Wada, H. Tasaki, S. Kaneko, J. Neurochem. 69 (2002) 2581–2588.
[18] T. Porkka-Heiskanen, Handb. Exp. Pharmacol. (2011) 331–348.
[19] V. Maridakis, P.J. O’Connor, P.D. Tomporowski, Int. J. Neurosci. 119 (2009) 1239–1258.
[20] M.J. Jarvis, Psychopharmacology 110 (1993) 45–52.
[21] A. Nehlig, J. Alzheimers. Dis. 20 Suppl 1 (2010) S85–94.
[22] C.H.S. Ruxton, Nutr. Bull. 33 (2008) 15–25.
[23] J. Lanini, J.C.F. Galduróz, S. Pompéia, Hum. Psychopharmacol. 31 (2016) 29–43.
[24] K. Soar, E. Chapman, N. Lavan, A.S. Jansari, J.J.D. Turner, Appetite 105 (2016) 156–163.
[25] F.L. Dodd, D.O. Kennedy, L.M. Riby, C.F. Haskell-Ramsay, Psychopharmacology 232 (2015) 2563–2576.
[26] C.F. Haskell, D.O. Kennedy, A.L. Milne, K.A. Wesnes, A.B. Scholey, Biol. Psychol. 77 (2008) 113–122.
[27] S.J.L. Einöther, T. Giesbrecht, Psychopharmacology 225 (2013) 251–274.
[28] A. Smith, Food Chem. Toxicol. 40 (2002) 1243–1255.
[29] M.A. Schwarzschild, K. Xu, E. Oztas, J.P. Petzer, K. Castagnoli, N. Castagnoli Jr, J.-F. Chen, Neurology 61 (2003) S55–61.
[30] M. Kolahdouzan, M.J. Hamadeh, CNS Neurosci. Ther. 23 (2017) 272–290.
[31] S.H. Backhouse, S.J.H. Biddle, N.C. Bishop, C. Williams, Appetite 57 (2011) 247–252.
[32] J.M. Davis, Z. Zhao, H.S. Stock, K.A. Mehl, J. Buggy, G.A. Hand, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R399–404.
[33] K.J. Acheson, B. Zahorska-Markiewicz, P. Pittet, K. Anantharaman, E. Jéquier, Am. J. Clin. Nutr. 33 (1980) 989–997.
[34] A. Astrup, S. Toubro, S. Cannon, P. Hein, L. Breum, J. Madsen, Am. J. Clin. Nutr. 51 (1990) 759–767.
[35] J. LeBlanc, M. Jobin, J. Côté, P. Samson, A. Labrie, J. Appl. Physiol. 59 (1985) 832–837.
[36] O.H. Choi, M.T. Shamim, W.L. Padgett, J.W. Daly, Life Sci. 43 (1988) 387–398.
[37] R. Franco, A. Oñatibia-Astibia, E. Martínez-Pinilla, Nutrients 5 (2013) 4159–4173.
[38] S.J.L. Einöther, V.E.G. Martens, J.A. Rycroft, E.A. De Bruin, Appetite 54 (2010) 406–409.
[39] T. Giesbrecht, J.A. Rycroft, M.J. Rowson, E.A. De Bruin, Nutr. Neurosci. 13 (2010) 283–290.
[40] G.N. Owen, H. Parnell, E.A. De Bruin, J.A. Rycroft, Nutr. Neurosci. 11 (2008) 193–198.
[41] S.E. Bruce, K.B. Werner, B.F. Preston, L.M. Baker, Int. J. Food Sci. Nutr. 65 (2014) 1003–1007.
[42] A. Misaizu, T. Kokubo, K. Tazumi, M. Kanayama, Y. Miura, Prev Nutr Food Sci 19 (2014) 367–372.

 

References [B]

 

1. Real Ketones Study Results Human Clinical Study Blind Comparison of Two Different Compositions of Exogenous Ketones and Their Impact on Anxiety, Weight, Lean Muscle Mass and Cognitive Function by Gacio, J. Koche, L. Dituri, J.


2. N. Martins, "Beta-hydroxybutyrate or BHB –All You Need to Know," 14 November 2019. [Online]. Available: https://hvmn.com/blogs/blog/exogenous-ketones-beta-hydroxybutyrate-or-bhb-all-you-need-to-know. [Accessed 23 November 2021].


3. "Beta-Hydroxybutyrate (Bhb)," WebMD, [Online]. Available: https://www.webmd.com/vitamins/ai/ingredientmono-1569/beta-hydroxybutyrate-bhb. [Accessed 23 November 2021].


4. Exogenous Ketones as an Adjunct to Low Calorie Diet on Metabolic Biomarkers, Fat Loss and Health. Conducted by The Center For Applied Health Sciences (CAHS) Tim N. Ziegenfuss, PhD, CSCS, FISSN, Hector L. Lopez, M.D., CSCS, FAAPMR, FI


5. "What is Beta-Hydroxybutyrate (BHB)?," Ketologic, [Online]. Available: https://ketologic.com/blogs/articles/what-is-beta-hydroxybutyrate. [Accessed 23 November 2021].


6. β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle - PMC (nih.gov)

 

7. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease - PMC (nih.gov)


8. Effects of medium-chain triglycerides on weight loss and body composition: a meta-analysis of randomized controlled trials - PubMed (nih.gov)


9. Medium-Chain Triglyceride Oil and Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Trials - PubMed (nih.gov)


10. Plasma Ketone and Medium Chain Fatty Acid Response in Humans Consuming Different Medium Chain Triglycerides During a Metabolic Study Day - PMC (nih.gov)


11. Intermittent fasting and weight loss - PMC (nih.gov)


12. Ketogenic Diet and Skeletal Muscle Hypertrophy: A Frenemy Relationship? - PMC (nih.gov)


13. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan: Cell Metabolism


14. Comment: How fasting might make our cells more resilient to stress (sbs.com.au)


15. Effects of short-term modified fasting on sleep patterns and daytime vigilance in non-obese subjects: results of a pilot study - PubMed (nih.gov)


16. The effects of diurnal intermittent fasting on the wake-promoting neurotransmitter orexin-A - PubMed (nih.gov)


17. Research review shows intermittent fasting works for weight loss, health changes -- ScienceDaily

 

18. Fasting: the history, pathophysiology and complications - PubMed (nih.gov)


19. Intermittent fasting: is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians | Clinical Diabetes and Endocrinology | Full Text (biomedcentral.com)

 

20. Intermittent metabolic switching, neuroplasticity and brain health - PMC (nih.gov)


21. Intermittent Fasting: a Promising Approach for Preventing Vascular Dementia - PMC (nih.gov)


22. Short-term fasting induces profound neuronal autophagy - PMC (nih.gov)


23. Autophagy and aging - PMC (nih.gov)


24. Autophagy and oxidative stress in cardiovascular diseases - PMC (nih.gov)


25. FGF21 induces autophagy‐mediated cholesterol efflux to inhibit atherogenesis via RACK1 up‐regulation - Xiaolong - 2020 - Journal of Cellular and Molecular Medicine - Wiley Online Library


26. Role of autophagy in cancer prevention - PMC (nih.gov)


27. Frontiers | Autophagy and Inflammation Regulation in Acute Kidney Injury | Physiology (frontiersin.org)


28. Coffee | The Nutrition Source | Harvard T.H. Chan School of Public Health


29. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence - PMC (nih.gov)


30. Caffeine intake increases plasma ketones: an acute metabolic study in humans - PubMed (nih.gov)

 

31. Coenzyme Q10 (oregonstate.edu)

 

32. Vitamin B12 protects against DNA damage induced by hydrochlorothiazide - ScienceDirect


33. Vitamin B12 (Cobalamin) Information | Mount Sinai - New York


34. Enhanced mitochondrial biogenesis is associated with the ameliorative action of creatine supplementation in rat soleus and cardiac muscles - PMC (nih.gov)


35. Caffeine as a protective factor in dementia and Alzheimer's disease - PubMed (nih.gov)


36. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial - PubMed (nih.gov)


37. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance - PMC (nih.gov)


38. Coffee Abundant in Chlorogenic Acids Reduces Abdominal Fat in Overweight Adults: A Randomized, Double-Blind, Controlled Trial - PubMed (nih.gov)


39. Caffeic Acid Phenethyl Ester, an Antioxidant from Propolis, Protects Peripheral Blood Mononuclear Cells of Competitive Cyclists against Hyperthermal Stress - Chen - 2009 - Journal of Food Science - Wiley Online Library

 

40. Anti-Wrinkle and Anti-Inflammatory Effects of Active Garlic Components and the Inhibition of MMPs via NF-κB Signaling - PMC (nih.gov)


41. Green Tea, Coffee, and Caffeine Consumption Are Inversely Associated with Self-Report Lifetime Depression in the Korean Population - PubMed (nih.gov)


42 Coffee consumption and risk of type 2 diabetes: a systematic review - PubMed (nih.gov)


43. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort - PubMed (nih.gov)


44. Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties - PMC (nih.gov)


45. The relationship of coffee consumption with mortality - PubMed (nih.gov)


46. Adenosine, Adenosine Receptors and the Actions of Caffeine * - Fredholm - 1995 - Pharmacology & Toxicology - Wiley Online Library


47. Coffee, diabetes, and weight control - PubMed (nih.gov)

 

48. Coffee, cirrhosis, and transaminase enzymes - PubMed (nih.gov)

 

49. Coffee Consumption and Risk of Liver Cancer: A Meta-Analysis - ScienceDirect

 

50. Caffeinated and decaffeinated coffee and tea intakes and risk of colorectal cancer in a large prospective study - PubMed (nih.gov)

 

51. Coffee Drinking and Mortality in 10 European Countries: A Multinational Cohort Study: Annals of Internal Medicine: Vol 167, No 4 (acpjournals.org)

 

52. Caffeine as a protective factor in dementia and Alzheimer's disease - PubMed (nih.gov)