BIOVIN

TOP BENEFITS OF BIOVIN

    • Supports healthy aging *
    • Supports exercise performance *

    • Supports metabolic health and healthy weight maintenance*

    • upports mitochondrial health *

    • Supports cellular responses and antioxidant defenses *

    • Supports maintenance of healthy cardiovascular function *

    • Supports maintenance of healthy brain function *

    • Supports healthy gut microbiota *


WHAT IS BIOVIN®?

BioVin® is made from the juice, seeds, and skins of French red grapes. It provides a full spectrum of grape’s health-promoting compounds (grapes contain thousands of compounds). Grape skins and seeds contain small amounts of trans-resveratrol. This compound has been the subject of hundreds of pre-clinical and clinical research studies. While trans-resveratrol has received a great deal of research attention, grapes are more than one compound: They contain resveratrol derivatives (e.g., viniferins, polydatin) and polyphenol compounds (e.g., oligomeric proanthocyanidins, quercetin, gallic acids, catechins). These compounds have complementarity with trans-resveratrol. We think it makes sense to use a full spectrum extract to capture these complementary activities.*


BIOVIN® KEY MECHANISMS

Mitochondrial biogenesis*

 

  • Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) [5–9]
  • Supports nuclear transcription factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM] [6,7,10–12]

 

Mitochondrial structure and function*

 

  • Supports healthy mitochondrial DNA (mtDNA) [7]

  • Supports mitochondrial structure [8]

  • Supports complex I-V function [13–18]

  • Supports the activities of TCA cycle enzymes [17]

  • Supports β-oxidation [15]

  • Supports the NAD+ pool [19]

 

Antioxidant defenses*

 

  • Counters reactive oxygen species (ROS) levels and oxidative stress [8,13,14,16,18,20]
  • Supports antioxidant defenses [6–9,11,13,20]

 

Metabolism*

 

  • Supports maintenance of healthy insulin sensitivity [20–23]

  • Supports maintenance of the insulin signaling pathway [20]

  • Supports the glucose transporter GLUT4 [20,24]

  • Supports brown adipose tissue levels [5]

  • Supports maintenance of healthy body fat levels [13,14,20]

  • Supports maintenance of healthy liver lipid levels [15]

     

Exercise performance*

 

  • Supports endurance performance [25]

  • Supports muscle mass [26]

 

Brain function and cognition*

 

  • Supports attention [27]
  • Supports memory function [27]
  • Supports working memory function [27]
  • Supports learning and memory (in animals) [28–35]
  • Supports healthy sleep [26]
  • Supports brain metabolism [26]
  • Supports BDNF levels [29,30,33,36–38]
  • Supports long-term potentiation [28,31]
  • Supports synaptic plasticity [33,39]
  • Influences acetylcholinesterase (AChE) activity [33]
  • Supports choline acetyltransferase (ChAT) activity [33]
  • Supports neuroprotective functions [31,34,35,40]
  • Supports neuronal mitochondrial function [6,32]
  • Supports brain Nrf2 signaling [37]
  • Counters brain oxidative stress [28,30,32,34,41]
  • Supports healthy brain cytokine signaling [34]

 

Mood and stress response*

 

  • Supports maintenance of healthy blood pressure [26,43]
  • Supports healthy vasodilation [43]
  • Supports endothelial progenitor cells [44]
  • Supports maintenance of healthy blood lipid levels [14,20]

 

Skin health*

 

  • Supports uniform skin pigmentation [45–47]
  • Supports healthy skin structure [48]
  • Supports healthy dermal ECM structure [48,49]
  • Supports skin Nrf2 signaling and phase II detox enzymes [48]  
  • Supports healthy immune/cytokine signaling [50]
  • Supports skin in adapting to environmental stress [48,50]

 

Gut microbiota*

 

  • Supports healthy gut microbiota [22,51–55]
  • Supports gut barrier function [55–57]
  • Counters gut oxidative stress [57,58]

 

Cellular signaling*

 

  • Supports AMPK signaling [7–9,11,15,20,21,59]
  • Supports healthy immune/cytokine signaling
  • Supports SIRT1 levels [6–9,19]
  • Counters mTOR signaling [59]
  • Supports UCP1 [5]

 

General health and longevity*

 

  • Supports healthy liver structure and function [17]
  • Supports healthy circadian rhythms [60,61]
  • Supports lifespan extension (Drosophila melanogaster) [18]

 

Complementary ingredients*

 

  • Gynostemma pentaphyllum (in supporting healthy insulin sensitivity) [23]
  • Pomegranate fruit extract in supporting skin health [62]

 

Mitochondrial biogenesis*

 

  • Supports peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) [63–70]
  • Supports nuclear transcriptional factors of mitochondrial biogenesis (nuclear respiratory factor-1 [NRF1], NRF2, mitochondrial transcription factor A [TFAM]) [64,67,69,71]

 

Mitochondrial structure and function*

 

  • Supports mitochondrial size and number [64,66]
  • Supports inner mitochondrial membrane folding (cristae) [64]
  • Supports mitochondrial DNA (mtDNA) [64,67,68]
  • Supports mitochondrial membrane potential [67]
  • Supports citrate synthase activity [63,64]
  • Supports ATP production [67,69]
  • Supports NAD+ pool [67,68,72]
  • Supports components of the electron transport chain - complex I-V [67]
  • Supports β-oxidation [64,70,72,73]

 

Signaling pathways*

 

  • Supports AMPK signaling [2,63,66–70,72,74]

  • Supports liver kinase B1 (LKB1) signaling [67,69]

  • Supports peroxisome proliferator-activated receptor alpha (PPARα) [64]

  • Influences peroxisome proliferator-activated receptor gamma (PPARγ) [70]

  • Supports normal estrogen receptor signaling [64,68,75,76]

  • Supports forkhead transcription factor O 1 (FOXO1) [70]

  • Supports cAMP levels (via phosphodiesterase [PDE] 1 and 4 and adenylate cyclase) [72,77]

 

Antioxidant defenses*

 

  • Counters reactive oxygen species (ROS) levels and oxidative stress [68,70–72,78–81]
  • Supports antioxidant defenses [82,83]
  • Influences NADPH oxidase [82,83]

 

Metabolism*

 

  • Supports maintenance of healthy insulin sensitivity [63,64,66,68,74,78,84]
  • Supports maintenance of healthy body fat levels [64]
  • Supports maintenance of healthy liver lipid levels [63,70]
  • Supports thermogenesis [64]
  • Supports adiponectin levels [70]

 

Exercise performance*

 

  • Supports endurance performance [64]

  • Supports muscle structure and function [67,85]

  • Supports glucose uptake in muscles [86]

 

Cardiovascular function*

 

  • Supports maintenance of healthy vascular function [82–84,87]

  • Supports maintenance of healthy cardiac function [86]

  • Supports maintenance of healthy blood lipid levels [63]

 

Brain function and cognition*

 

  • Supports maintenance of healthy executive function [88,89]
  • Supports learning and memory (animals) [90–93]
  • Supports cerebral blood flow [88,94–96]
  • Supports neuroprotective functions [79,80,97–101]
  • Supports maintenance of neural stem cells [102,103]
  • Supports neurogenesis [102–104]
  • Supports BDNF levels [91–93,98,101,104–110]
  • Supports healthy brain immune/cytokine signaling [101,105,108]
  • Supports HPA axis signaling [98,109]

 

Gut microbiota*

 

  • Supports healthy gut microbiota [111–117]
  • Supports healthy gut microbial metabolism [114]
  • Supports gut microbial gene expression [114]
  • Supports gut barrier function [114]
  • Supports healthy gut immune signaling [117]

 

Skin health*

 

  • Supports uniform skin pigmentation [118–120]
  • Supports healthy dermal ECM structure (collagen, elastin) [48,121,122]  
  • Supports healthy skin structure [48]
  • Supports skin antioxidant defenses [121–124]
  • Counters ROS production and oxidative stress [125]
  • Supports skin Nrf2 signaling and phase II defenses [48,123,126]  
  • Supports healthy immune/cytokine signaling [121,122,127]
  • Supports skin in adapting to environmental stress [125,128–134]
  • Supports SIRT1 expression in the skin [121,122]
  • Influences aging biomarkers S100 A8 and S100 A9 in the skin [121,122]
  • Influences skin autophagy [135]

 

Healthy aging and longevity*

 

  • Supports healthy stem cell functions [136–148]
  • Supports telomerase activity [136–138,149,150]
  • Counters cell senescence [124,137,138,143,150]
  • Supports SIRT1 levels [2,63,65,67,70,71,151,152] [121,122]
  • Supports mitochondrial uncoupling proteins UCP1, UCP2, and UCP3 [64,68]
  • Supports Klotho levels [71,152]
  • Counters mTOR signaling [66]
  • Supports lifespan extension (mice on high-calorie diet, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae) [66,87,151,153,154]

 

Circadian rhythms*

 

  • Supports healthy circadian rhythms [155–158]

  • Influences clock gene expression [155,158]

 

Complementary ingredients*

 

  • Apigenin - resveratrol is an apigenin bioenhancer [159]

  • Piperine as a bioenhancer [160–164] and for maintenance of cognitive function [165]

  • Hawthorn for cardiovascular function support [166]

  • Inositol for metabolic health [167]

BIOVIN CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1]K. Magyar, R. Halmosi, A. Palfi, G. Feher, L. Czopf, A. Fulop, I. Battyany, B. Sumegi, K. Toth, E. Szabados, Clin. Hemorheol. Microcirc. 50 (2012) 179–187.

[2]K.P. Goh, H.Y. Lee, D.P. Lau, W. Supaat, Y.H. Chan, A.F.Y. Koh, Int. J. Sport Nutr. Exerc. Metab. 24 (2014) 2–13.

[3]C.W. Zhu, H. Grossman, J. Neugroschl, S. Parker, A. Burden, X. Luo, M. Sano, Alzheimer’s & Dementia: Translational Research & Clinical Interventions 4 (2018) 609–616.

[4]W. Zhu, W. Qin, K. Zhang, G.E. Rottinghaus, Y.-C. Chen, B. Kliethermes, E.R. Sauter, Nutrition and Cancer 64 (2012) 393–400.

[5]C. Rodriguez Lanzi, D.J. Perdicaro, M.S. Landa, A. Fontana, A. Antoniolli, R.M. Miatello, P.I. Oteiza, M.A. Vazquez Prieto, J. Nutr. Biochem. 56 (2018) 224–233.

[6]H. Asseburg, C. Schäfer, M. Müller, S. Hagl, M. Pohland, D. Berressem, M. Borchiellini, C. Plank, G.P. Eckert, Neuromolecular Med. 18 (2016) 378–395.

[7]L. Bao, X. Cai, X. Dai, Y. Ding, Y. Jiang, Y. Li, Z. Zhang, Y. Li, Food Funct. 5 (2014) 1872–1880.

[8]X. Cai, L. Bao, J. Ren, Y. Li, Z. Zhang, Food Funct. 7 (2016) 805–815.

[9]L. Bao, X. Cai, Z. Zhang, Y. Li, Br. J. Nutr. 113 (2015) 35–44.

[10]I. Pokkunuri, Q. Ali, M. Asghar, Oxid. Med. Cell. Longev. 2016 (2016) 6135319.

[11]J. Lu, H. Jiang, B. Liu, R. Baiyun, S. Li, Y. Lv, D. Li, S. Qiao, X. Tan, Z. Zhang, Food Chem. Toxicol. 116 (2018) 59–69.

[12]S.G. Li, Y.S. Ding, Q. Niu, S.Z. Xu, L.J. Pang, R.L. Ma, M.X. Jing, G.L. Feng, J.M. Liu, S.X. Guo, Biomed. Environ. Sci. 28 (2015) 272–280.

[13]M. El Ayed, S. Kadri, M. Mabrouk, E. Aouani, S. Elkahoui, Lipids Health Dis. 17 (2018) 109.

[14]D. Leonetti, R. Soleti, N. Clere, L. Vergori, C. Jacques, L. Duluc, C. Dourguia, M.C. Martínez, R. Andriantsitohaina, Front. Pharmacol. 9 (2018) 406.

[15]M. Yin, P. Zhang, F. Yu, Z. Zhang, Q. Cai, W. Lu, B. Li, W. Qin, M. Cheng, H. Wang, H. Gao, Mol. Med. Rep. 16 (2017) 2844–2850.

[16]N.F.F. de Sales, L. Silva da Costa, T.I.A. Carneiro, D.A. Minuzzo, F.L. Oliveira, L.M.C. Cabral, A.G. Torres, T. El-Bacha, Molecules 23 (2018).

[17]S. Miltonprabu, Nazimabashir, V. Manoharan, Toxicol Rep 3 (2016) 63–77.

[18]J. Long, H. Gao, L. Sun, J. Liu, X. Zhao-Wilson, Rejuvenation Res. 12 (2009) 321–331.

[19]G. Aragonès, M. Suárez, A. Ardid-Ruiz, M. Vinaixa, M.A. Rodríguez, X. Correig, L. Arola, C. Bladé, Sci. Rep. 6 (2016) 24977.

[20]G.F. da Costa, I.B. Santos, G.F. de Bem, V.S.C. Cordeiro, C.A. da Costa, L.C.R.M. de Carvalho, D.T. Ognibene, A.C. Resende, R.S. de Moura, Phytother. Res. 31 (2017) 1621–1632.

[21]E. Casanova, L. Baselga-Escudero, A. Ribas-Latre, L. Cedó, A. Arola-Arnal, M. Pinent, C. Bladé, L. Arola, M.J. Salvadó, J. Nutr. Biochem. 25 (2014) 1003–1010.

[22]W. Liu, S. Zhao, J. Wang, J. Shi, Y. Sun, W. Wang, G. Ning, J. Hong, R. Liu, Mol. Nutr. Food Res. 61 (2017).

[23]H.-J. Zhang, B.-P. Ji, G. Chen, F. Zhou, Y.-C. Luo, H.-Q. Yu, F.-Y. Gao, Z.-P. Zhang, H.-Y. Li, J. Food Sci. 74 (2009) H1–7.

[24]M. Aoun, F. Michel, G. Fouret, A. Schlernitzauer, V. Ollendorff, C. Wrutniak-Cabello, J.-P. Cristol, M.-A. Carbonneau, C. Coudray, C. Feillet-Coudray, Br. J. Nutr. 106 (2011) 491–501.

[25]L.T. Toscano, R.L. Tavares, L.T. Toscano, C.S.O. da Silva, A.E.M. de Almeida, A.C.T. Biasoto, M. da C.R. Gonçalves, A.S. Silva, Appl. Physiol. Nutr. Metab. 40 (2015) 899–906.

[26]M. Terauchi, N. Horiguchi, A. Kajiyama, M. Akiyoshi, Y. Owa, K. Kato, T. Kubota, Menopause 21 (2014) 990–996.

[27]G. Calapai, F. Bonina, A. Bonina, L. Rizza, C. Mannucci, V. Arcoraci, G. Laganà, A. Alibrandi, C. Pollicino, S. Inferrera, U. Alecci, Front. Pharmacol. 8 (2017) 776.

[28]G. Patki, F.H. Allam, F. Atrooz, A.T. Dao, N. Solanki, G. Chugh, M. Asghar, F. Jafri, R. Bohat, K.A. Alkadhi, S. Salim, PLoS One 8 (2013) e74522.

[29]N. Solanki, I. Alkadhi, F. Atrooz, G. Patki, S. Salim, Nutr. Res. 35 (2015) 65–75.

[30]F. Allam, A.T. Dao, G. Chugh, R. Bohat, F. Jafri, G. Patki, C. Mowrey, M. Asghar, K.A. Alkadhi, S. Salim, J. Nutr. 143 (2013) 835–842.

[31]A. Sarkaki, M. Rafieirad, S.E. Hossini, Y. Farbood, F. Motamedi, S.M.T. Mansouri, B. Naghizadeh, Iran. J. Basic Med. Sci. 16 (2013) 1004–1010.

[32]N. Solanki, A. Salvi, G. Patki, S. Salim, Int. J. Neuropsychopharmacol. 20 (2017) 550–561.

[33]L. Ma, H. Xiao, J. Wen, Z. Liu, Y. He, F. Yuan, Lipids Health Dis. 17 (2018) 152.

[34]I.H. Borai, M.K. Ezz, M.Z. Rizk, H.F. Aly, M. El-Sherbiny, A.A. Matloub, G.I. Fouad, Biomed. Pharmacother. 93 (2017) 837–851.

[35]D. Rapaka, V.R. Bitra, T.C. Vishala, A. Akula, J. Ayurveda Integr. Med. 10 (2019) 241–247.

[36]C. Dani, A.C. Andreazza, C.A. Gonçalves, F. Kapizinski, J.A.P. Henriques, M. Salvador, An. Acad. Bras. Cienc. 89 (2017) 155–161.

[37]H. Liao, L.-M. Chou, Y.-W. Chien, C.-H. Wu, J.-S. Chang, C.-I. Lin, S.-H. Lin, J. Nutr. Biochem. 43 (2017) 132–140.

[38]C. Jiang, E. Sakakibara, W.-J. Lin, J. Wang, G.M. Pasinetti, S.R. Salton, Ann. N. Y. Acad. Sci. 1455 (2019) 196–205.

[39]J. Wang, C. Tang, M.G. Ferruzzi, B. Gong, B.J. Song, E.M. Janle, T.-Y. Chen, B. Cooper, M. Varghese, A. Cheng, D. Freire, A. Bilski, J. Roman, T. Nguyen, L. Ho, S.T. Talcott, J.E. Simon, Q. Wu, G.M. Pasinetti, Mol. Nutr. Food Res. 57 (2013) 2091–2102.

[40]K. Narita, M. Hisamoto, T. Okuda, S. Takeda, PLoS One 6 (2011) e14575.

[41]G. Patki, Q. Ali, I. Pokkunuri, M. Asghar, S. Salim, Nutr. Res. 35 (2015) 504–511.

[42]Z. Alrefaie, Int. J. Vitam. Nutr. Res. 85 (2015) 282–291.

[43]J.-K. Kim, K.-A. Kim, H.-M. Choi, S.-K. Park, C.L. Stebbins, J. Med. Food 21 (2018) 445–453.

[44]F. Felice, Y. Zambito, G. Di Colo, C. D’Onofrio, C. Fausto, A. Balbarini, R. Di Stefano, Eur. J. Pharm. Biopharm. 80 (2012) 176–184.

[45]J. Yamakoshi, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, Y. Kubota, Y. Kawachi, F. Otsuka, Phytother. Res. 18 (2004) 895–899.

[46]J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, Y. Kubota, Pigment Cell Res. 16 (2003) 629–638.

[47]Y.-S. Lin, H.-J. Chen, J.-P. Huang, P.-C. Lee, C.-R. Tsai, T.-F. Hsu, W.-Y. Huang, Biomed Res. Int. 2017 (2017) 5232680.

[48]J. Kim, J. Oh, J.N. Averilla, H.J. Kim, J.-S. Kim, J.-S. Kim, J. Food Sci. 84 (2019) 1600–1608.

[49]J. Wittenauer, S. Mäckle, D. Sußmann, U. Schweiggert-Weisz, R. Carle, Fitoterapia 101 (2015) 179–187.

[50]H.P. Decean, I.C. Brie, C.B. Tatomir, M. Perde-Schrepler, E. Fischer-Fodor, P. Virag, J. Environ. Pathol. Toxicol. Oncol. 37 (2018) 261–272.

[51]V. Nash, C.S. Ranadheera, E.N. Georgousopoulou, D.D. Mellor, D.B. Panagiotakos, A.J. McKune, J. Kellett, N. Naumovski, Food Res. Int. 113 (2018) 277–287.

[52]S. Chacar, M. Tarighi, N. Fares, J.-F. Faivre, N. Louka, R.G. Maroun, Antioxidants (Basel) 7 (2018).

[53]À. Casanova-Martí, J. Serrano, K.J. Portune, Y. Sanz, M.T. Blay, X. Terra, A. Ardévol, M. Pinent, Food Funct. 9 (2018) 1672–1682.

[54]S. Chacar, T. Itani, J. Hajal, Y. Saliba, N. Louka, J.-F. Faivre, R. Maroun, N. Fares, J. Food Sci. 83 (2018) 246–251.

[55]M. Van Hul, L. Geurts, H. Plovier, C. Druart, A. Everard, M. Ståhlman, M. Rhimi, K. Chira, P.-L. Teissedre, N.M. Delzenne, E. Maguin, A. Guilbot, A. Brochot, P. Gérard, F. Bäckhed, P.D. Cani, Am. J. Physiol. Endocrinol. Metab. 314 (2018) E334–E352.

[56]K. Gil-Cardoso, I. Ginés, M. Pinent, A. Ardévol, M. Blay, X. Terra, J. Nutr. Biochem. 62 (2018) 35–42.

[57]K. Gil-Cardoso, I. Ginés, M. Pinent, A. Ardévol, L. Arola, M. Blay, X. Terra, Mol. Nutr. Food Res. 61 (2017).

[58]P. Kuhn, H.M. Kalariya, A. Poulev, D.M. Ribnicky, A. Jaja-Chimedza, D.E. Roopchand, I. Raskin, PLoS One 13 (2018) e0198716.

[59]L. Castillo-Pichardo, S.F. Dharmawardhane, Nutr. Cancer 64 (2012) 1058–1069.

[60]A. Ribas-Latre, L. Baselga-Escudero, E. Casanova, A. Arola-Arnal, M.-J. Salvadó, C. Bladé, L. Arola, Sci. Rep. 5 (2015) 10954.

[61]A. Ribas-Latre, J.M. Del Bas, L. Baselga-Escudero, E. Casanova, A. Arola-Arnal, M.-J. Salvadó, L. Arola, C. Bladé, Mol. Nutr. Food Res. 59 (2015) 865–878.

[62]D. Buonocore, A. Lazzeretti, P. Tocabens, V. Nobile, E. Cestone, G. Santin, M.G. Bottone, F. Marzatico, Clin. Cosmet. Investig. Dermatol. 5 (2012) 159–165.

[63]S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen, Cell Metab. 14 (2011) 612–622.

[64]M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Cell 127 (2006) 1109–1122.

[65]T.D. Scribbans, J.K. Ma, B.A. Edgett, K.A. Vorobej, A.S. Mitchell, J.G.E. Zelt, C.A. Simpson, J. Quadrilatero, B.J. Gurd, Appl. Physiol. Nutr. Metab. 39 (2014) 1305–1313.

[66]J.A. Baur, K.J. Pearson, N.L. Price, H.A. Jamieson, C. Lerin, A. Kalra, V.V. Prabhu, J.S. Allard, G. Lopez-Lluch, K. Lewis, P.J. Pistell, S. Poosala, K.G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K.W. Fishbein, R.G. Spencer, E.G. Lakatta, D. Le Couteur, R.J. Shaw, P. Navas, P. Puigserver, D.K. Ingram, R. de Cabo, D.A. Sinclair, Nature 444 (2006) 337–342.

[67]N.L. Price, A.P. Gomes, A.J.Y. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, B.P. Hubbard, A.T. Varela, J.G. Davis, B. Varamini, A. Hafner, R. Moaddel, A.P. Rolo, R. Coppari, C.M. Palmeira, R. de Cabo, J.A. Baur, D.A. Sinclair, Cell Metab. 15 (2012) 675–690.

[68]J.-H. Um, S.-J. Park, H. Kang, S. Yang, M. Foretz, M.W. McBurney, M.K. Kim, B. Viollet, J.H. Chung, Diabetes 59 (2010) 554–563.

[69]B. Dasgupta, J. Milbrandt, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 7217–7222.

[70]J.M. Ajmo, X. Liang, C.Q. Rogers, B. Pennock, M. You, Am. J. Physiol. Gastrointest. Liver Physiol. 295 (2008) G833–42.

[71]P. Zhang, Y. Li, Y. Du, G. Li, L. Wang, F. Zhou, Transplant. Proc. 48 (2016) 3378–3386.

[72]S.-J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, A.L. Brown, M.K. Kim, M.A. Beaven, A.B. Burgin, V. Manganiello, J.H. Chung, Cell 148 (2012) 421–433.

[73]J. Most, S. Timmers, I. Warnke, J.W. Jocken, M. van Boekschoten, P. de Groot, I. Bendik, P. Schrauwen, G.H. Goossens, E.E. Blaak, Am. J. Clin. Nutr. 104 (2016) 215–227.

[74]C.E. Park, M.-J. Kim, J.H. Lee, B.-I. Min, H. Bae, W. Choe, S.-S. Kim, J. Ha, Exp. Mol. Med. 39 (2007) 222–229.

[75]B.D. Gehm, J.M. McAndrews, P.Y. Chien, J.L. Jameson, Proc. Natl. Acad. Sci. U. S. A. 94 (1997) 14138–14143.

[76]J.L. Bowers, V.V. Tyulmenkov, S.C. Jernigan, C.M. Klinge, Endocrinology 141 (2000) 3657–3667.

[77]A.M. El-Mowafy, M. Alkhalaf, Carcinogenesis 24 (2003) 869–873.

[78]P. Brasnyó, G.A. Molnár, M. Mohás, L. Markó, B. Laczy, J. Cseh, E. Mikolás, I.A. Szijártó, A. Mérei, R. Halmai, L.G. Mészáros, B. Sümegi, I. Wittmann, Br. J. Nutr. 106 (2011) 383–389.

[79]R. Moldzio, K. Radad, C. Krewenka, B. Kranner, J.C. Duvigneau, W.-D. Rausch, J. Neural Transm. 120 (2013) 1271–1280.

[80]Y.K. Gupta, S. Briyal, G. Chaudhary, Pharmacol. Biochem. Behav. 71 (2002) 245–249.

[81]S.S. Leonard, C. Xia, B.-H. Jiang, B. Stinefelt, H. Klandorf, G.K. Harris, X. Shi, Biochem. Biophys. Res. Commun. 309 (2003) 1017–1026.

[82]G. Spanier, H. Xu, N. Xia, S. Tobias, S. Deng, L. Wojnowski, U. Forstermann, H. Li, J. Physiol. Pharmacol. 60 Suppl 4 (2009) 111–116.

[83]N. Xia, A. Daiber, A. Habermeier, E.I. Closs, T. Thum, G. Spanier, Q. Lu, M. Oelze, M. Torzewski, K.J. Lackner, T. Münzel, U. Förstermann, H. Li, J. Pharmacol. Exp. Ther. 335 (2010) 149–154.

[84]J.P. Crandall, V. Oram, G. Trandafirescu, M. Reid, P. Kishore, M. Hawkins, H.W. Cohen, N. Barzilai, J. Gerontol. A Biol. Sci. Med. Sci. 67 (2012) 1307–1312.

[85]J.-P.K. Hyatt, L. Nguyen, A.E. Hall, A.M. Huber, J.C. Kocan, J.A. Mattison, R. de Cabo, J.R. LaRocque, R.J. Talmadge, Front. Physiol. 7 (2016) 77.

[86]J.L. Barger, T. Kayo, J.M. Vann, E.B. Arias, J. Wang, T.A. Hacker, Y. Wang, D. Raederstorff, J.D. Morrow, C. Leeuwenburgh, D.B. Allison, K.W. Saupe, G.D. Cartee, R. Weindruch, T.A. Prolla, PLoS One 3 (2008) e2264.

[87]K.J. Pearson, J.A. Baur, K.N. Lewis, L. Peshkin, N.L. Price, N. Labinskyy, W.R. Swindell, D. Kamara, R.K. Minor, E. Perez, H.A. Jamieson, Y. Zhang, S.R. Dunn, K. Sharma, N. Pleshko, L.A. Woollett, A. Csiszar, Y. Ikeno, D. Le Couteur, P.J. Elliott, K.G. Becker, P. Navas, D.K. Ingram, N.S. Wolf, Z. Ungvari, D.A. Sinclair, R. de Cabo, Cell Metab. 8 (2008) 157–168.

[88]R.H.X. Wong, D. Raederstorff, P.R.C. Howe, Nutrients 8 (2016).

[89]S.D. Anton, N. Ebner, J.M. Dzierzewski, Z.Z. Zlatar, M.J. Gurka, V.M. Dotson, J. Kirton, R.T. Mankowski, M. Marsiske, T.M. Manini, J. Altern. Complement. Med. 24 (2018) 725–732.

[90]Y. Yazir, T. Utkan, N. Gacar, F. Aricioglu, Physiol. Behav. 138 (2015) 297–304.

[91]J.-F. Ge, Y.-Y. Xu, N. Li, Y. Zhang, G.-L. Qiu, C.-H. Chu, C.-Y. Wang, G. Qin, F.-H. Chen, Endocrine Journal 62 (2015) 927–938.

[92]Y.-N. Zhao, W.-F. Li, F. Li, Z. Zhang, Y.-D. Dai, A.-L. Xu, C. Qi, J.-M. Gao, J. Gao, Biochem. Biophys. Res. Commun. 435 (2013) 597–602.

[93]J. Shen, L. Xu, C. Qu, H. Sun, J. Zhang, Behav. Brain Res. 349 (2018) 1–7.

[94]D.O. Kennedy, E.L. Wightman, J.L. Reay, G. Lietz, E.J. Okello, A. Wilde, C.F. Haskell, Am. J. Clin. Nutr. 91 (2010) 1590–1597.

[95]E.L. Wightman, C.F. Haskell-Ramsay, J.L. Reay, G. Williamson, T. Dew, W. Zhang, D.O. Kennedy, Br. J. Nutr. 114 (2015) 1427–1437.

[96]H.M. Evans, P.R.C. Howe, R.H.X. Wong, Nutrients 9 (2017).

[97]Q. Wang, S. Yu, A. Simonyi, G. Rottinghaus, G.Y. Sun, A.Y. Sun, Neurochem. Res. 29 (2004) 2105–2112.

[98]C. Pang, L. Cao, F. Wu, L. Wang, G. Wang, Y. Yu, M. Zhang, L. Chen, W. Wang, W. Lv, L. Chen, J. Zhu, J. Pan, H. Zhang, Y. Xu, L. Ding, Neuropharmacology 97 (2015) 447–456.

[99]G. Wang, L. Chen, X. Pan, J. Chen, L. Wang, W. Wang, R. Cheng, F. Wu, X. Feng, Y. Yu, H.-T. Zhang, J.M. O’Donnell, Y. Xu, Oncotarget 7 (2016).

[100]Q. Zhang, X. Wang, X. Bai, Y. Xie, T. Zhang, S. Bo, X. Chen, Mol. Med. Rep. 16 (2017) 2095–2100.

[101]L. Ge, L. Liu, H. Liu, S. Liu, H. Xue, X. Wang, L. Yuan, Z. Wang, D. Liu, Eur. J. Pharmacol. 768 (2015) 49–57.

[102]L. Xu, Y. Yang, L. Gao, J. Zhao, Y. Cai, J. Huang, S. Jing, X. Bao, Y. Wang, J. Gao, H. Xu, X. Fan, Biochim. Biophys. Acta 1852 (2015) 1298–1310.

[103]N.B. Bottari, M.R.C. Schetinger, M.M. Pillat, T.V. Palma, H. Ulrich, M.S. Alves, V.M. Morsch, C. Melazzo, L.D. de Barros, J.L. Garcia, A.S. Da Silva, Mol. Neurobiol. 56 (2019) 2328–2338.

[104]S. Madhyastha, S. Sekhar, G. Rao, Int. J. Dev. Neurosci. 31 (2013) 580–585.

[105]M. Wiciński, M. Socha, M. Walczak, E. Wódkiewicz, B. Malinowski, S. Rewerski, K. Górski, K. Pawlak-Osińska, Nutrients 10 (2018).

[106]M. Rahvar, M. Nikseresht, S.M. Shafiee, F. Naghibalhossaini, M. Rasti, M.R. Panjehshahin, A.A. Owji, Neurochem. Res. 36 (2011) 761–765.

[107]G. Li, G. Wang, J. Shi, X. Xie, N. Fei, L. Chen, N. Liu, M. Yang, J. Pan, W. Huang, Y. Xu, Neuropharmacology 133 (2018) 181–188.

[108]X.-H. Yang, S.-Q. Song, Y. Xu, Neuropsychiatr. Dis. Treat. 13 (2017) 2727–2736.

[109]S.H. Ali, R.M. Madhana, A. K V., E.R. Kasala, L.N. Bodduluru, S. Pitta, J.R. Mahareddy, M. Lahkar, Steroids 101 (2015) 37–42.

[110]J. Song, S.Y. Cheon, W. Jung, W.T. Lee, J.E. Lee, Int. J. Mol. Sci. 15 (2014) 15512–15529.

[111]Y.-L. Tain, W.-C. Lee, K.L.H. Wu, S. Leu, J.Y.H. Chan, Mol. Nutr. Food Res. (2018) e1800066.

[112]Y. Zheng, W. Wu, G. Hu, L. Qiu, S. Meng, C. Song, L. Fan, Z. Zhao, X. Bing, J. Chen, Fish Shellfish Immunol. 77 (2018) 200–207.

[113]L. Zhao, Q. Zhang, W. Ma, F. Tian, H. Shen, M. Zhou, Food Funct. 8 (2017) 4644–4656.

[114]J.K. Bird, D. Raederstorff, P. Weber, R.E. Steinert, Adv. Nutr. 8 (2017) 839–849.

[115]A.S. Korsholm, T.N. Kjær, M.J. Ornstrup, S.B. Pedersen, Int. J. Mol. Sci. 18 (2017).

[116]M.M. Sung, T.T. Kim, E. Denou, C.-L.M. Soltys, S.M. Hamza, N.J. Byrne, G. Masson, H. Park, D.S. Wishart, K.L. Madsen, J.D. Schertzer, J.R.B. Dyck, Diabetes 66 (2017) 418–425.

[117]M. Larrosa, M.J. Yañéz-Gascón, M.V. Selma, A. González-Sarrías, S. Toti, J.J. Cerón, F. Tomás-Barberán, P. Dolara, J.C. Espín, J. Agric. Food Chem. 57 (2009) 2211–2220.

[118]T.H. Lee, J.O. Seo, S.-H. Baek, S.Y. Kim, Biomol. Ther. 22 (2014) 35–40.

[119]Q. Liu, C. Kim, Y.H. Jo, S.B. Kim, B.Y. Hwang, M.K. Lee, Molecules 20 (2015) 16933–16945.

[120]R.A. Newton, A.L. Cook, D.W. Roberts, J.H. Leonard, R.A. Sturm, J. Invest. Dermatol. 127 (2007) 2216–2227.

[121]E.D. Lephart, M.B. Andrus, Exp. Biol. Med. 242 (2017) 1482–1489.

[122]E.D. Lephart, J.M. Sommerfeldt, M.B. Andrus, J. Funct. Foods 10 (2014) 377–384.

[123]J. Soeur, J. Eilstein, G. Léreaux, C. Jones, L. Marrot, Free Radic. Biol. Med. 78 (2015) 213–223.

[124]Y. Ido, A. Duranton, F. Lan, K.A. Weikel, L. Breton, N.B. Ruderman, PLoS One 10 (2015) e0115341.

[125]K. Park, J.-H. Lee, Oncol. Rep. 19 (2008) 413–417.

[126]Y. Liu, F. Chan, H. Sun, J. Yan, D. Fan, D. Zhao, J. An, D. Zhou, Eur. J. Pharmacol. 650 (2011) 130–137.

[127]X. Zhu, Q. Liu, M. Wang, M. Liang, X. Yang, X. Xu, H. Zou, J. Qiu, PLoS One 6 (2011) e27081.

[128]F. Zhou, X. Huang, Y. Pan, D. Cao, C. Liu, Y. Liu, A. Chen, Biochem. Biophys. Res. Commun. 499 (2018) 662–668.

[129]S. Reagan-Shaw, F. Afaq, M.H. Aziz, N. Ahmad, Oncogene 23 (2004) 5151–5160.

[130]M.A. Choi, J.K. Seok, J.W. Lee, S.Y. Lee, Y.M. Kim, Y.C. Boo, J. Soc. Cosmet. Sci. Korea 44 (2018) 249–258.

[131]M.-H. Tsai, L.-F. Hsu, C.-W. Lee, Y.-C. Chiang, M.-H. Lee, J.-M. How, C.-M. Wu, C.-L. Huang, I.-T. Lee, Int. J. Biochem. Cell Biol. 88 (2017) 113–123.

[132]J.-W. Shin, H.-S. Lee, J.-I. Na, C.-H. Huh, K.-C. Park, H.-R. Choi, Int. J. Mol. Sci. 21 (2020).

[133]C. Sticozzi, G. Belmonte, F. Cervellati, X.M. Muresan, F. Pessina, Y. Lim, H.J. Forman, G. Valacchi, Free Radic. Biol. Med. 69 (2014) 50–57.

[134]C. Sticozzi, F. Cervellati, X.M. Muresan, C. Cervellati, G. Valacchi, Food Funct. 5 (2014) 2348–2356.

[135]D.K. Mostafa, S.I. Omar, A.A. Abdellatif, O.A. Sorour, O.A. Nayel, M.R.A. Al Obaidi, Curr. Mol. Pharmacol. (2020).

[136]V.P. Pearce, J. Sherrell, Z. Lou, L. Kopelovich, W.E. Wright, J.W. Shay, Oncogene 27 (2008) 2365–2374.

[137]L. Xia, X.X. Wang, X.S. Hu, X.G. Guo, Y.P. Shang, H.J. Chen, C.L. Zeng, F.R. Zhang, J.Z. Chen, Br. J. Pharmacol. 155 (2008) 387–394.

[138]X.-B. Wang, L. Zhu, J. Huang, Y.-G. Yin, X.-Q. Kong, Q.-F. Rong, A.-W. Shi, K.-J. Cao, Chin. Med. J. 124 (2011) 4310–4315.

[139]M.L. Balestrieri, C. Schiano, F. Felice, A. Casamassimi, A. Balestrieri, L. Milone, L. Servillo, C. Napoli, J. Biochem. 143 (2008) 179–186.

[140]L. Ling, S. Gu, Y. Cheng, Mol. Med. Rep. 15 (2017) 1188–1194.

[141]X.-H. Chen, Z.-G. Shi, H.-B. Lin, F. Wu, F. Zheng, C.-F. Wu, M.-W. Huang, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 6352–6359.

[142]H. Zhang, Z. Zhai, Y. Wang, J. Zhang, H. Wu, Y. Wang, C. Li, D. Li, L. Lu, X. Wang, J. Chang, Q. Hou, Z. Ju, D. Zhou, A. Meng, Free Radic. Biol. Med. 54 (2013) 40–50.

[143]Y.-J. Lv, Y. Yang, B.-D. Sui, C.-H. Hu, P. Zhao, L. Liao, J. Chen, L.-Q. Zhang, T.-T. Yang, S.-F. Zhang, Y. Jin, Theranostics 8 (2018) 2387–2406.

[144]H. Liu, S. Zhang, L. Zhao, Y. Zhang, Q. Li, X. Chai, Y. Zhang, Stem Cells Int. 2016 (2016) 2524092.

[145]I.I. Suvorova, A.R. Knyazeva, A.V. Petukhov, N.D. Aksenov, V.A. Pospelov, Cell Death Discov 5 (2019) 61.

[146]Y.-J. Wang, P. Zhao, B.-D. Sui, N. Liu, C.-H. Hu, J. Chen, C.-X. Zheng, A.-Q. Liu, K. Xuan, Y.-P. Pan, Y. Jin, Exp. Mol. Med. 50 (2018) 1–15.

[147]T.-S. Chen, C.-H. Kuo, C.H. Day, L.-F. Pan, R.-J. Chen, B.-C. Chen, V.V. Padma, Y.-M. Lin, C.-Y. Huang, J. Cell. Physiol. 234 (2019) 20443–20452.

[148]Z. Safaeinejad, M. Nabiuni, M. Peymani, K. Ghaedi, M.H. Nasr-Esfahani, H. Baharvand, Eur. J. Cell Biol. 96 (2017) 665–672.

[149]F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, S.-I. Tanuma, Curr. Aging Sci. 4 (2011) 1–7.

[150]J. Li, C.-X. Zhang, Y.-M. Liu, K.-L. Chen, G. Chen, Oncotarget 8 (2017) 65717–65729.

[151]K.T. Howitz, K.J. Bitterman, H.Y. Cohen, D.W. Lamming, S. Lavu, J.G. Wood, R.E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer, D.A. Sinclair, Nature 425 (2003) 191–196.

[152]S.-C. Hsu, S.-M. Huang, A. Chen, C.-Y. Sun, S.-H. Lin, J.-S. Chen, S.-T. Liu, Y.-J. Hsu, Int. J. Biochem. Cell Biol. 53 (2014) 361–371.

[153]T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128 (2007) 546–552.

[154]J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, D. Sinclair, Nature 430 (2004) 686–689.

[155]J. Miranda, M.P. Portillo, J.A. Madrid, N. Arias, M.T. Macarulla, M. Garaulet, Br. J. Nutr. 110 (2013) 1421–1428.

[156]F. Pifferi, A. Dal-Pan, S. Languille, F. Aujard, Oxid. Med. Cell. Longev. 2013 (2013) 187301.

[157]J.R. Leheste, G. Torres, Front. Mol. Neurosci. 8 (2015) 61.

[158]L. Sun, Y. Wang, Y. Song, X.-R. Cheng, S. Xia, M.R.T. Rahman, Y. Shi, G. Le, Biochem. Biophys. Res. Commun. 458 (2015) 86–91.

[159]J.-A. Lee, S.K. Ha, E. Cho, I. Choi, Nutrients 7 (2015) 9650–9661.

[160]J.J. Johnson, M. Nihal, I.A. Siddiqui, C.O. Scarlett, H.H. Bailey, H. Mukhtar, N. Ahmad, Mol. Nutr. Food Res. 55 (2011) 1169–1176.

[161]N. Pannu, A. Bhatnagar, Inflammopharmacology 28 (2020) 719–735.

[162]K.R. Polley, N. Jenkins, P. O’Connor, K. McCully, Appl. Physiol. Nutr. Metab. 41 (2016) 26–32.

[163]W. Huang, Z. Chen, Q. Wang, M. Lin, S. Wu, Q. Yan, F. Wu, X. Yu, X. Xie, G. Li, Y. Xu, J. Pan, Metab. Brain Dis. 28 (2013) 585–595.

[164]Y. Xu, C. Zhang, F. Wu, X. Xu, G. Wang, M. Lin, Y. Yu, Y. An, J. Pan, Metab. Brain Dis. 31 (2016) 837–848.

[165]E.L. Wightman, J.L. Reay, C.F. Haskell, G. Williamson, T.P. Dew, D.O. Kennedy, Br. J. Nutr. 112 (2014) 203–213.

[166]Y. Zhu, B. Feng, S. He, Z. Su, G. Zheng, Phytomedicine 40 (2018) 20–26.

[167]A. Malvasi, I. Kosmas, O.A. Mynbaev, R. Sparic, S. Gustapane, M. Guido, A. Tinelli, Clin. Ter. 168 (2017) e240–e247.