BETAINE BENEFITS

KEY BENEFITS OF BETAINE

    • Supports NAD metabolism
    • Supports cardiovascular health
    • Supports aspects of sports performance
    • Supports aspects of sports performance
    • Supports liver health
    • Supports neurotransmitter and melatonin synthesis
    • Supports cardiovascular health

ABOUT BETAINE

Sugar beets (Beta vulgaris) contain betaine, which is where its name comes from.
 
Betaines are chemical compounds similar in structure.
 
As trimethylglycine was discovered as the first betaine, it is commonly used as a synonym for betaine (the type of betaine found in sugar beets), though TMG is more specifically called glycine betaine.
 
Other types of betaines can exist however they are not commonly consumed as dietary supplements. The amino acid betaine belongs to the protein category (i.e., it is an amino acid derivative).
 
Beetroots are a good source, as are quinoa, spinach, lamb, and wheat brain, as well as some other foods. A choline-based form of betaine is produced in the body. It is believed that dietary choline has this metabolic fate.
 
Betaine, however, is an essential cofactor in methylation, a process in which methyl groups (-CH3) are supplied to the body for other purposes. According to the National Institutes of Health, most adults do not consume enough choline, so relying on choline to make betaine can be like "robbery to pay Paul."
 
Besides being necessary for phosphatidylcholine, betaine also plays a role in producing the neurotransmitter acetylcholine. Among these processes are (1) synthesizing neurotransmitters such as dopamine, serotonin, and melatonin, (2) making melatonin and CoQ10, (3) methylating DNA for epigenetics, (4) remethylating homocysteine (important for cardiovascular health), and (5) influencing levels of S-Adenosyl Methionine (SAM) and folate (since they are widely involved in methylation).
 
Betaine is believed to provide up to 60% of the methyl groups needed to methylate homocysteine [3].
 
In the absence of NAD (metabolites of NAD are methylated for elimination), strategies that promote NAD may decrease betaine[4,5]. In order to boost NAD levels, experts recommend supplementing with betaine.
 
Betaine is primarily used for supporting the health of the heart and liver but has also been receiving some attention as an ergogenic (i.e., enhancing sports performance) and nootropic supplement. Betaine is used by some biohackers to improve sleep.  

BETAINE FULL BENEFITS

Homocysteine metabolism

 

  • Methylates homocysteine to produce the amino acid L-methionine[1]
  • Regulates the blood levels of homocysteine (a risk factor for cardiovascular disease)[6–8]

 

NAD metabolome

 

  • Supports the demand for methyl groups caused by the metabolism of niacin equivalents (e.g., niacin, niacinamide, nicotinamide riboside, NMN)[9]
  • Supports the production of hepatic S-adenosylmethionine[10–12]
  • Balances the reduction in hepatic levels of S-adenosylmethionine (SAMe) caused by the
  • metabolism of niacin equivalents[9]

 

Mitochondrial function

 

  • Supports mitochondrial size/density/number[13]
  • Supports mitochondrial respiratory capacity[14,15]
  • Supports fatty acid oxidation[13,16]
  • Supports electron transport chain and oxidative phosphorylation performance[15,17,18]
  • Supports mitochondrial dynamics—upregulates mitochondrial fusion[19]
  • Supports mitochondrial membrane potential[15,17]
  • Supports mitochondrial antioxidant defenses[17]
  • Supports mitochondrial function[17,20]

 

Brain function

 

  • Supports memory[21–25]
  • Down-regulates the expression of GABA transaminase [21]
  • Supports betaine-GABA transporters [24,25]
  • Supports neuronal mitochondrial performance [14]
  • Supports brain phospholipid metabolism [16]
  • Supports brain antioxidant defenses [23,25–27]

 

Liver function

 

  • Supports hepatic fatty acid metabolism [10–13,18,28]
  • Supports liver protective functions [17,20]
  • Supports liver antioxidant defenses [20]

 

Ergogenic

 

  • Supports resistance training performance [29–33]
  • Supports anabolic signaling [34]

 

Gastrointestinal function

 

  • Supports intestinal digestive enzymes[35]
  • Supports gut microbiota[35–39]

 

Cell function

 

  • Osmolyte—regulates cell hydration[40]

 

Complementary ingredients

 

  • Choline — Supplementation with choline sources can increase betaine levels[41,42]
  • S-Adenosyl Methionine (SAMe)— Supplementation with betaine can increase SAMe levels[43]
  • Folic acid in regulating homocysteine levels[7]
  • Melatonin —appears to have synergies when combined for gut health[44,45]

BETAINE CAN BE FOUND IN:

Morning Momentum

Get Instant Access To A Simple, Proven System That Has Helped

THOUSANDS of People

IGNITE Their Health and Energy

to Create The Life They Deserve!

Learn More


REFERENCES

[1] P.M. Ueland, J. Inherit. Metab. Dis. 34 (2011) 3–15.
[2] M. Lever, P.M. George, J.L. Elmslie, W. Atkinson, S. Slow, S.L. Molyneux, R.W. Troughton, A.M. Richards, C.M. Frampton, S.T. Chambers, PLoS One 7 (2012) e37883.
[3] H. Pellanda, Clin. Chem. Lab. Med. 51 (2013) 617–621.
[4] W.-P. Sun, M.-Z. Zhai, D. Li, Y. Zhou, N.-N. Chen, M. Guo, S.-S. Zhou, Clin. Nutr. 36 (2017) 1136–1142.
[5] Y.-J. Tian, D. Li, Q. Ma, X.-Y. Gu, M. Guo, Y.-Z. Lun, W.-P. Sun, X.-Y. Wang, Y. Cao, S.-S. Zhou, Sheng Li Xue Bao 65 (2013) 33–38.
[6] M.R. Olthof, T. van Vliet, E. Boelsma, P. Verhoef, J. Nutr. 133 (2003) 4135–4138.
[7] G. Alfthan, K. Tapani, K. Nissinen, J. Saarela, A. Aro, Br. J. Nutr. 92 (2004) 665–669.
[8] G.R. Steenge, P. Verhoef, M.B. Katan, J. Nutr. 133 (2003) 1291–1295.
[9] M.F. McCarty, Med. Hypotheses 55 (2000) 189–194.
[10] A.J. Barak, H.C. Beckenhauer, M. Junnila, D.J. Tuma, Alcohol. Clin. Exp. Res. 17 (1993) 552–555.
[11] A.J. Barak, H.C. Beckenhauer, S. Badakhsh, D.J. Tuma, Alcohol. Clin. Exp. Res. 21 (1997) 1100–1102.
[12] S. Mukherjee, TOTRANSMJ 3 (2011) 1–4.
[13] L. Zhang, Y. Qi, Z. ALuo, S. Liu, Z. Zhang, L. Zhou, Food Funct. 10 (2019) 216–223.
[14] N.K. Singhal, S. Li, E. Arning, K. Alkhayer, R. Clements, Z. Sarcyk, R.S. Dassanayake, N.E. Brasch, E.J. Freeman, T. Bottiglieri, J. McDonough, J. Neurosci. 35 (2015) 15170–15186.
[15] I. Lee, Biochem. Biophys. Res. Commun. 456 (2015) 621–625.
[16] N. Abu Ahmad, M. Raizman, N. Weizmann, B. Wasek, E. Arning, T. Bottiglieri, O. Tirosh, A.M. Troen, FASEB J. 33 (2019) 9334–9349.
[17] M.J. Khodayar, H. Kalantari, L. Khorsandi, M. Rashno, L. Zeidooni, Biomed. Pharmacother. 103 (2018) 1436–1445.
[18] K.K. Kharbanda, S.L. Todero, A.L. King, N.A. Osna, B.L. McVicker, D.J. Tuma, J.L. Wisecarver, S.M. Bailey, Int. J. Hepatol. 2012 (2012) 962183.
[19] M. Jung Kim, Anim Cells Syst (Seoul) 22 (2018) 289–298.
[20] R. Heidari, H. Niknahad, A. Sadeghi, H. Mohammadi, V. Ghanbarinejad, M.M. Ommati, A. Hosseini, N. Azarpira, F. Khodaei, O. Farshad, E. Rashidi, A. Siavashpour, A. Najibi, A. Ahmadi, A. Jamshidzadeh, Biomed. Pharmacother. 103 (2018) 75–86.
[21] K. Kunisawa, K. Kido, N. Nakashima, T. Matsukura, T. Nabeshima, M. Hiramatsu, Eur. J. Pharmacol. 796 (2017) 122–130.
[22] K. Kunisawa, N. Nakashima, M. Nagao, T. Nomura, S. Kinoshita, M. Hiramatsu, Behav. Brain Res. 292 (2015) 36–43.
[23] C. Nie, H. Nie, Y. Zhao, J. Wu, X. Zhang, Neurosci. Lett. 615 (2016) 9–14.
[24] M. Miwa, M. Tsuboi, Y. Noguchi, A. Enokishima, T. Nabeshima, M. Hiramatsu, J. Neuroinflammation 8 (2011) 153.
[25] D. Ibi, A. Tsuchihashi, T. Nomura, M. Hiramatsu, Eur. J. Pharmacol. 842 (2019) 57–63.
[26] M. Alirezaei, Z. Khoshdel, O. Dezfoulian, M. Rashidipour, V. Taghadosi, J. Physiol. Sci. 65 (2015) 243–252.
[27] M. Alirezaei, G. Jelodar, P. Niknam, Z. Ghayemi, S. Nazifi, J. Physiol. Biochem. 67 (2011) 605–612.
[28] M.F. Abdelmalek, S.O. Sanderson, P. Angulo, C. Soldevila-Pico, C. Liu, J. Peter, J. Keach, M. Cave, T. Chen, C.J. McClain, K.D. Lindor, Hepatology 50 (2009) 1818–1826.
[29] J.F. Trepanowski, T.M. Farney, C.G. McCarthy, B.K. Schilling, S.A. Craig, R.J. Bloomer, J. Strength Cond. Res. 25 (2011) 3461–3471.
[30] J.R. Hoffman, N.A. Ratamess, J. Kang, A.M. Gonzalez, N.A. Beller, S.A.S. Craig, J. Strength Cond. Res. 25 (2011) 2235–2241.
[31] J.R. Hoffman, N.A. Ratamess, J. Kang, S.L. Rashti, A.D. Faigenbaum, J. Int. Soc. Sports Nutr. 6 (2009) 7.
[32] E.C. Lee, C.M. Maresh, W.J. Kraemer, L.M. Yamamoto, D.L. Hatfield, B.L. Bailey, L.E. Armstrong, J.S. Volek, B.P. McDermott, S.A. Craig, J. Int. Soc. Sports Nutr. 7 (2010) 27.
[33] J.L. Pryor, S.A. Craig, T. Swensen, J. Int. Soc. Sports Nutr. 9 (2012) 12.
[34] J.M. Apicella, E.C. Lee, B.L. Bailey, C. Saenz, J.M. Anderson, S.A.S. Craig, W.J. Kraemer, J.S. Volek, C.M. Maresh, Eur. J. Appl. Physiol. 113 (2013) 793–802.
[35] H. Wang, S. Li, S. Fang, X. Yang, J. Feng, Nutrients 10 (2018).
[36] Y. Qu, K. Zhang, Y. Pu, L. Chang, S. Wang, Y. Tan, X. Wang, J. Zhang, T. Ohnishi, T. Yoshikawa, K. Hashimoto, J. Affect. Disord. 272 (2020) 66–76.
[37] F. Wang, J. Xu, I. Jakovlić, W.-M. Wang, Y.-H. Zhao, Food Funct. 10 (2019) 6675–6689.
[38] V.M. Koistinen, O. Kärkkäinen, K. Borewicz, I. Zarei, J. Jokkala, V. Micard, N. Rosa-Sibakov, S. Auriola, A.-M. Aura, H. Smidt, K. Hanhineva, Microbiome 7 (2019) 103.
[39] B.U. Metzler-Zebeli, A. Ratriyanto, D. Jezierny, N. Sauer, M. Eklund, R. Mosenthin, Arch. Anim. Nutr. 63 (2009) 427–441.
[40] M.B. Burg, J.D. Ferraris, J. Biol. Chem. 283 (2008) 7309–7313.
[41] L.M. Fischer, K.-A. da Costa, L. Kwock, J. Galanko, S.H. Zeisel, Am. J. Clin. Nutr. 92 (2010) 1113–1119.
[42] J.M.W. Wallace, J.M. McCormack, H. McNulty, P.M. Walsh, P.J. Robson, M.P. Bonham, M.E. Duffy, M. Ward, A.M. Molloy, J.M. Scott, P.M. Ueland, J.J. Strain, Br. J. Nutr. 108 (2012) 1264–1271.
[43] R. Deminice, R.P. da Silva, S.G. Lamarre, K.B. Kelly, R.L. Jacobs, M.E. Brosnan, J.T. Brosnan, Amino Acids 47 (2015) 839–846.
[44] M.R. Werbach, Altern. Ther. Health Med. 14 (2008) 54–58.
[45] R. de S. Pereira, J. Pineal Res. 41 (2006) 195–200.